## ZyMōt® MULTI SPERM SEPARATION DEVICE

# Sperm Preparation Made Easy







## ZyMōt® Multi Sperm Separation Device

ZyMōt devices separate sperm based purely on sperm motility within a microenvironment, without containing any chemical elements.

#### Simple to adopt

Minimal training requirements when using the ZyMōt device equate to more flexibility across users with varying levels of experience.<sup>1</sup>

#### Easy to use

The ZyMōt device is simple to use, helping labs quickly achieve high-quality sperm separation for ART procedures.<sup>1-3</sup>

#### Saving time

ZyMōt helps save time and has revolutionized sperm preparation, allowing for a fast and effective solution for preparing sperm for ICSI, IVF and IUI.<sup>1-4</sup>

#### Reducing lab risks

ZyMōt requires fewer movements per sample, which could help reduce the risk of errors.<sup>1,5</sup>

### ZyMōt® Multi Device



ZyMōt Multi (850µL) Device



ZyMōt Multi (3mL) Device

| Product Code | Product Name                               | Processing Volume (mL) | Pack Size         |
|--------------|--------------------------------------------|------------------------|-------------------|
| ZMH0850      | ZyMōt® Multi 850µL Sperm Separation Device | 850µL                  | 10 units per pack |
| ZMH3000      | ZyMōt® Multi 3mL Sperm Separation Device   | 3mL                    | 10 units per pack |

- 1. Asghar, W. et al. 2014. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Advanced healthcare materials, 3(10), pp.1671–1679.
- 2. Broussard, A. et al. 2019. Sperm DNA fragmentation (SDF) was most effectively improved by a sperm separation device compared to different gradient and swimup methods. Fertility and Sterility, 111(4), p.e15.
- 3. Bastuba, M. et al. 2020. Microfluidic sperm separation device dramatically lowers DFI. Fertility and Sterility, 113(4), p.e44.
- 4. Gode, F. et al. 2019. Comparison of microfluid sperm sorting chip and density gradient methods for use in intrauterine insemination cycles. Fertility and Sterility, 112(5), pp.842-848.
- 5. Ogbejesi, C. et al. 2022. Microfluidic sperm sorting compared with traditional density gradient centrifugation: A cost analysis. Fertility and Sterility, 118(4), p.e142.



© 2025 CooperSurgical, Inc. The trademarks used herein are the property of CooperSurgical, Inc. All rights reserved. Order No. AND\_PDS\_0003\_US\_US\_V1  $\cdot$  April 29, 2025. All information correct at time of print. Specifications are subject to change without notice or obligation on the part of the manufacturer.